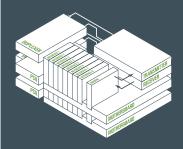


2.0 GHz licensed band

Aprisa XE: maximizing spectrum use and making challenging long distance links possible

- Efficient future-proof single-box architecture: the Aprisa XE's built-in multiplexer and cross-connect
 eliminate external equipment and minimize the over-the-air requirements, with customer-configurable
 interface slots integrating all IP, voice and data traffic. Configuration, performance monitoring and
 diagnostics are easy with the 4RF embedded web-based element management system, SuperVisor.
- **High capacity**: class-leading spectral efficiency and up to 64 QAM modulation make the maximum use of the available spectrum, with industry leading capacity of up to 65.4 Mbit/s in a 14.0 MHz channel.
- Long range: a single 2.0 GHz Aprisa XE can link distances in excess of 80 miles, overcoming the problems of water, environmental conditions and topographical obstacles.
- Carrier-class performance: Aprisa XE links are engineered to achieve 'five 9s' availability, benefiting
 from state of the art forward error correction and inherent low latencies, for unrivaled quality of service.
- **Cost effective**: the Aprisa XE has a low total cost of ownership, providing a rapid return on investment by minimizing both capital and operational expenditure.
- Redundancy options: Monitored Hot Standby and Hitless Space Diversity are available for protection in mission-critical applications.
- **Reliable**: the Aprisa XE has an actual MTBF of 95.72 years. It can be relied upon to perform in the harshest and most remote environments.



The Aprisa XE in brief

- Licensed 2.0 GHz frequency band
- Built-in cross-connect and multiplexer
- Up to 65.4 Mbit/s capacity
- 500 kHz, 1.0 MHz, 1.75 MHz, 3.5 MHz,
 7.0 MHz and 14.0 MHz channel sizes
- QPSK to 64 QAM modulation
- Range of 80+ miles
- Industry-leading reliability
- Web server and SNMP management
- All voice, data and IP applications
- MHSB and HSD protection options

Future-proof single-box architecture

4RF

SYSTEM SPECIFICATION

RF	BAND	TUNING RANGE	SYNTHESIZER STEP SIZE			
FREQUENCIES	2000 MHz	1900 – 2300 MHz	62.5 kHz			
MODULATION TYPES	Software configurable: QPSK / 16 / 32 / 64 QAM					
FREQUENCY STABILITY	Short term ± 1 ppm (environmental effects and power supply variations) Long term ± 2 ppm (aging of crystal oscillators ≈ over 5 years)					
ANTENNA CONNECTION	N-type female 50 ohm					
TRANSMITTER OUTPUT	POWER					
QPSK	+20 dBm to +34 dBm					
16 QAM	+17 dBm to +31 dBm					
32 QAM	+16 dBm to +30 dBm					
64 QAM	+15 dBm to +29 dBm					
RECEIVER						
MAXIMUM INPUT LEVEL	_20 dBm					
DYNAMIC RANGE	58 to 87 dB at 10 ⁻⁶ BER					
C/I RATIO	Co-channel	QPSK	better than 16 dB			
		16 QAM	better than 20 dB			
		32 QAM	better than 23 dB			
		64 QAM	better than 27 dB			
	First adjacent channel		better than -5 dB			
	Second adjacent chan	nel	better than -30 dB			
DUPLEXER (bandpass)	PASSBAND	TX / RX SPLIT	TUNING RANGE			
	14 MHz	≥ 91 MHz	1900 – 2300 MHz			
POWER SUPPLY						
INPUT RANGE	115/230 VAC, 50/60 Hz					
	±24 VDC (20.5 – 30 VDC), ±48 VDC (40 – 60 VDC)					
POWER CONSUMPTION	53 – 180 W input power (dependent on interface cards fitted and transmitter output power level)					

INTERFACES				
ETHERNET	Integrated 4-port 10/100Base-T switch with port-based rate limiting, VLAN			
	tagging and QoS Support			
E1 / T1	Quad 120 ohm G.703/4			
DATA	Quad V.24 asynchronous, synchronous and over sampling mode			
	Single synchronous X.21 / V.35 / RS-449 / RS-530			
ANALOG	Dual 2-wire FXS/FXO (POTS); Quad 4-wire E&M			
AUXILIARY INTERF	ACES			
ALARMS	4 external alarm outputs, 2 external alarm inputs			
CONFIGURATION	Embedded web server with SNMP			
MANAGEMENT	Ethernet interface for SuperVisor and SNMP; V.24 setup port			
RSSI	Front panel test point			
ENVIRONMENTAL				
OPERATING	+14° F to +122° F (-10° C to +50° C)			
STORAGE	-4° F to +158° F (-20° C to +70° C)			
HUMIDITY	Maximum 95 % non-condensing			
MECHANICAL				
RACK MOUNT	19" 2U high (internal duplexer)			
WEIGHT	23 lbs (10 kg) typical			
PROTECTED OPTIO	NS			
MHSB	≤ 4 dB splitter/cable loss, ≤1 dB TX relay/cable loss			
	(system gain reduced by a maximum of 5 dB)			
HSD	≤ 1 dB TX relay/cable loss, < 25 ms TX switching/hitless RX switching			
COMPLIANCE				
RADIO	RSS-GEN, RSS-119, SRSP-302.0			
EMI / EMC	ICES-003			
SAFETY	EN 60950			
	CSA 253147 applicable for AC, 48 VDC and 24 VDC product variants			
ENVIRONMENTAL	ETS 300 019 Class 3.2, WEEE			

SYSTEM PERFORMANCE

500 kHz CHANNEL		QPSK	16 QAM	32 QAM	64 QAM
CAPACITY 1	gross (T1 + wayside)	792 (12 TS + 24) kbit/s	1592 (1 T1 + 8) kbit/s	1992 (1 T1 + 408) kbit/s	2392 (1 T1 + 808) kbit/s
RECEIVER SENSITIVITY 2		–99 dBm	–93 dBm	-90 dBm	-87 dBm
SYSTEM GAIN ²		133 dB	124 dB	120 dB	116 dB
1.0 MHz CHANNEL		QPSK	16 QAM	32 QAM	64 QAM
CAPACITY ¹	gross (T1 + wayside)	1624 (1 T1 + 40) kbit/s	3256 (2 T1 + 88) kbit/s	4072 (2 T1 + 904) kbit/s	4888 (3 T1 + 136) kbit/s
RECEIVER SENSITIVITY 2		–96 dBm	–90 dBm	-87 dBm	-84 dBm
SYSTEM GAIN ²		130 dB	121 dB	117 dB	113 dB
1.75 MHz CHANNEL		QPSK	16 QAM	32 QAM	64 QAM
CAPACITY 1	gross (T1 + wayside)	2872 (1 T1 + 1288) kbit/s	5752 (3 T1 + 1000) kbit/s	7192 (4 T1 + 856) kbit/s	8632 (5 T1 + 712) kbit/s
RECEIVER SENSITIVITY 2		–94 dBm	–88 dBm	-85 dBm	-82 dBm
SYSTEM GAIN ²		128 dB	119 dB	115 dB	111 dB
3.5 MHz CHANNEL		QPSK	16 QAM	32 QAM	64 QAM
CAPACITY 1	gross (T1 + wayside)	5720 (3 T1 + 968) kbit/s	11448 (7 T1 + 360) kbit/s	14312 (9 T1 + 56) kbit/s	17176 (10 T1 + 1336) kbit/s
RECEIVER SENSITIVITY 2		-90 dBm	-84 dBm	-81 dBm	-78 dBm
SYSTEM GAIN ²		124 dB	115 dB	111 dB	107 dB
7.0 MHz CHANNEL		QPSK	16 QAM	32 QAM	64 QAM
CAPACITY 1	gross (T1 + wayside)	11832 (7 T1 + 744) kbit/s	23672 (14 T1 + 1496) kbit/s	29592 (18 T1 + 1080) kbit/s	35512 (22 T1 + 664) kbit/s
RECEIVER SENSITIVITY 2		-87 dBm	-81 dBm	–78 dBm	–75 dBm
SYSTEM GAIN ²		121 dB	112 dB	108 dB	104 dB
14.0 MHz CHANNEL		QPSK	16 QAM	32 QAM	64 QAM
CAPACITY ¹	gross (T1 + wayside)	N/A	47992 (30 T1 + 472) kbit/s	59992 (32 T1 + 9304) kbit/s	65464 (32 T1 + 14776) kbit/s
RECEIVER SENSITIVITY 2		N/A	–78 dBm	–75 dBm	-72 dBm
SYSTEM GAIN ²		N/A	109 dB	105 dB	101 dB

NOTES

- 1 T1 capacities are specified as unframed. The management Ethernet capacity must be subtracted from the gross capacity (default 64 kbit/s).
- 2~ Performance specified at the antenna port for $10^{\text{-}6}$ BER. Figures for $10^{\text{-}3}$ BER are typically 1 dB better.
- 3 Unreleased: Please contact 4RF for availability.

OETH

Quad port Ethernet interface card supporting 10Base-T or 100Base-TX

The QETH is a quad port Ethernet interface card supporting 10Base-T or 100Base-TX for transport of user Ethernet traffic. The QETH features are:

- Layer 2 Ethernet / VLAN Switch conforming to 802.1D/Q supporting standard LAN networks
- Traffic segregation with transparent VLAN and per port VLAN tagging for user and management traffic.
- QoS support for tight traffic control with per packet prioritization, scheduling and priority queuing.
 Priority can be either per port or per packet and scheduling can be either strict priority or weighted priority.
 Ingress rate limiting per port (up to 8 Mbit/s) can be used to protect against buffer flooding.

QJET

Quad E1 / T1 framed / unframed interface card

The QJET is a quad port 2 Mbit/s E1 / T1 digital interface providing unframed (G.703) and framed (G.704) interfaces. Unframed (G.703) E1 is typically used for transport of an entire E1 / T1 over the radio link.

Framed (G.704) E1 / T1 timeslots can be cross connected to:

- 1. Any other E1 / T1 timeslot on any other E1 / T1 interface providing transport, timeslot grooming and drop and insert functionality.
- 2. Analogue interface cards providing digital trunk interface connection to PBX and telephone exchanges.
- 3. QV24 interface cards providing synchronous over sampling circuits.

OV24

Quad V.24 serial interface card

The QV24 is a quad port serial interface card providing asynchronous and synchronous V.24 data transmission.

Asynchronous mode provides V.24 circuits at data rates of 300, 600, 1200, 2400, 4800, 7200, 9600, 12800, 14400, 19200, 23040, 28800, 38400, 57600 and 115200 bit/s.

In synchronous mode, interface data is synchronously mapped to radio capacity using proprietary subrate multiplexing providing data rates of 300, 600, 1200, 2400, 4800, 9600 and 19200 bit/s. QV24 interfaces are required at both ends of the circuit.

In over sampling mode, the interface data is sampled at a fixed 64 kHz. This timeslot can be cross connected to an E1 or T1. This over sampling mode can be operated up to 19200 bit/s.

HSS

Single synchronous serial interface card

The HSS is a single port high speed serial interface card providing V.35, X.21, RS-449 and RS-530 synchronous data transmission as either a DTE or a DCE. It supports data rates of 8 to 2048 kbit/s in 8 kbit/s steps (dependent on rate selected). 8 kbit/s is used for control lines.

The interface card provides an LFH 60 connector and uses standard Cisco WAN port serial interface cables to provide the correct data interface connector.

The interface specification (X.21 / V.35 etc) is automatically changed by simply changing the type of interface cable connected to the HSS.

Q4EM

Quad 4 wire E&M interface card

The Q4EM is a quad port analogue interface card providing a 4 wire analogue circuit and single E&M signalling.

The Q4EM digitizes analogue signals using either 64 kbit/s PCM (G.711-compliant) or 32, 24 or 16 kbit/s ADPCM compression (G.726-compliant), providing phone-quality voice transmission. Channel Associated Signalling (A bit) is used to signal between the interfaces.

The Q4EM E&M signalling leads are optically isolated, bi-directional lines which can be externally referenced to meet any of the EIA-464 connection types I, II, IV or V.

DFXO

Dual 2 wire loop signalling foreign exchange office (FXO) interface card

The function of FXO / FXS two wire loop interface circuits is to transparently extend the 2 wire interface from the exchange line card to the telephone / PBX, ideally without loss or distortion. These circuits are known as 'ring out, dial in' 2 wire loop interface circuits. The DFXO interface simulates the function of a telephone.

The DFXO digitizes analogue signals using either 64 kbit/s PCM (G.711-compliant) or 32, 24 or 16 kbit/s ADPCM compression (G.726-compliant), providing phone-quality voice transmission. Channel Associated Signalling (ABCD bits) is used to signal the remote DFXS.

Line and balance impedances are synthesized with high-performance DSP architecture.

DFXS

Dual 2 wire loop signalling foreign exchange subscriber (FXS) interface card

The function of FXO / FXS two wire loop interface circuits is to transparently extend the 2 wire interface from the exchange line card to the telephone / PBX, ideally without loss or distortion. These circuits are known as 'ring out, dial in' 2 wire loop interface circuits. The DFXS interface simulates the function of an exchange line card.

The DFXS digitizes analogue signals using either 64 kbit/s PCM (G.711-compliant) or 32, 24 or 16 kbit/s ADPCM compression (G.726-compliant), providing phone-quality voice transmission. Channel Associated Signalling (ABCD bits) is used to signal the remote DFXO.

Line and balance impedances are synthesized with high-performance DSP architecture.

ABOUT 4RF

Operating in more than 140 countries, 4RF provides radio communications equipment for critical infrastructure applications. Customers include utilities, oil and gas companies, transport companies, telecommunication operators, international aid organisations, public safety, military and security organisations. 4RF point-to-point and point-to-multipoint products are optimized for performance in harsh climates and difficult terrain, supporting IP, legacy analog, serial data and PDH applications.

Copyright © 2017 4RF Limited. All rights reserved. This document is protected by copyright belonging to 4RF Limited and may not be reproduced or republished in whole or part in any form without the prior written consent of 4RF Limited. While every precaution has been taken in the preparation of this literature, 4RF Limited assumes no liability for errors or omissions, or from any damages resulting from the use of this information. The contents and product specifications within it are subject to revision due to ongoing product improvements and may change without notice. Aprisa and the 4RF logo are trademarks of 4RF Limited.

For more information please contact EMAIL sales@4rf.com URL www.4rf.com

Version 9.4.0